Welcome!

Server Monitoring Authors: Yeshim Deniz, Liz McMillan, Pat Romanski, Carmen Gonzalez, Ken Schwaber

Blog Feed Post

A First Look at rxDForest()

by Joseph RIckert Last July, I blogged about rxDTree() the RevoScaleR function for building classification and regression trees on very large data sets. As I explaned then, this function is an implementation of the algorithm introduced by Ben-Haim and Yom-Tov in their 2010 paper that builds trees on histograms of data and not on the raw data itself. This algorithm is designed for parallel and distributed computing. Consequently, rxDTree() provides the best performance when it is running on a cluster: either an Microsoft HPC cluster or a Linux LSF cluster. rxDForest() (new with Revolution R Enterprise 7.0) uses rxDTree() to take the next logical step and implement a random forest type algorithm for building both classification and regression forests. Each tree of the ensemble constructed by rxDForest() is built with a bootstrap sample that uses about 2/3 of the original data. The data not used in builting a particular tree is used to make predictions with that tree. Each point of the original data set is fed through all of the trees that were built without it. The decision forest prediction for that data point is the statistical mode of the individual tree predictions. (For classification problems the prediction is a majority vote, for regression problems the prediction is the mean of the predictions.)  Only a couple of parameters need to be set to fit a decision forest. nTree specifies the number of trees to grow and  mTry spedifies the number of variables to sample as split candidates at each tree node. Of course, many more parameters can be set to control the algorithm, including the parameters that control the underlying rxDTree() algorithm. The following is a small example of the rxDForest() fucntion using the mortgage default dataset that can be downloaded from Revolution Analytic's website. Here are the first three lines of data.   creditScore houseAge yearsEmploy ccDebt year default1    615        10        5          2818 2000    02    780        34        5          3575 2000    0 3    735        12        1          3184 2000    0  The idea is to see if the variables creditScore, houseAge etc. are useful in predicting a default. The RevoScaleR R code in the file Download RxDForest  reads in the mortgage data, splits the data into a training file and a test file, uses rxDTree() to build a single tree (just to see what one looks like for this file) and plots the tree. Then rxDForest() is run against the training file to to build an ensemble model and this model run against the test file to make predictions. Finally, the code plots the ROC curve for the decision forest ensemble model. Here is what the first few nodes of the tree looks like. (The full tree is printed at the bottom of the code in the file above.) Call: rxDTree(formula = form1, data = "mdTrain", maxDepth = 5)File: C:\Users\Joe.Rickert\Documents\Revolution\RevoScaleR\mdTrain.xdf Number of valid observations: 8000290 Number of missing observations: 0 Tree representation: n= 8000290 node), split, n, deviance, yval * denotes terminal node 1) root 8000290 39472.30000 4.958445e-03 2) ccDebt< 9085.5 7840182 21402.25000 2.737309e-03 4) ccDebt< 7844 7384170 8809.46500 1.194447e-03  He is a plot of the right part of the tree drawn with RevoScaleR's creatTreeView() function that enables plot() to put the graph in your browser.     And, finally, here is the ROC curve for the decision Forest model. (The text output describing the model is also in the file containing the code.)   I plan to try rxDForest() out on a cluster with a bigger data set. When I do, I will let you know. 

Read the original blog entry...

More Stories By David Smith

David Smith is Vice President of Marketing and Community at Revolution Analytics. He has a long history with the R and statistics communities. After graduating with a degree in Statistics from the University of Adelaide, South Australia, he spent four years researching statistical methodology at Lancaster University in the United Kingdom, where he also developed a number of packages for the S-PLUS statistical modeling environment. He continued his association with S-PLUS at Insightful (now TIBCO Spotfire) overseeing the product management of S-PLUS and other statistical and data mining products.<

David smith is the co-author (with Bill Venables) of the popular tutorial manual, An Introduction to R, and one of the originating developers of the ESS: Emacs Speaks Statistics project. Today, he leads marketing for REvolution R, supports R communities worldwide, and is responsible for the Revolutions blog. Prior to joining Revolution Analytics, he served as vice president of product management at Zynchros, Inc. Follow him on twitter at @RevoDavid

IoT & Smart Cities Stories
Early Bird Registration Discount Expires on August 31, 2018 Conference Registration Link ▸ HERE. Pick from all 200 sessions in all 10 tracks, plus 22 Keynotes & General Sessions! Lunch is served two days. EXPIRES AUGUST 31, 2018. Ticket prices: ($1,295-Aug 31) ($1,495-Oct 31) ($1,995-Nov 12) ($2,500-Walk-in)
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
Business professionals no longer wonder if they'll migrate to the cloud; it's now a matter of when. The cloud environment has proved to be a major force in transitioning to an agile business model that enables quick decisions and fast implementation that solidify customer relationships. And when the cloud is combined with the power of cognitive computing, it drives innovation and transformation that achieves astounding competitive advantage.
Nicolas Fierro is CEO of MIMIR Blockchain Solutions. He is a programmer, technologist, and operations dev who has worked with Ethereum and blockchain since 2014. His knowledge in blockchain dates to when he performed dev ops services to the Ethereum Foundation as one the privileged few developers to work with the original core team in Switzerland.
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
IoT is rapidly becoming mainstream as more and more investments are made into the platforms and technology. As this movement continues to expand and gain momentum it creates a massive wall of noise that can be difficult to sift through. Unfortunately, this inevitably makes IoT less approachable for people to get started with and can hamper efforts to integrate this key technology into your own portfolio. There are so many connected products already in place today with many hundreds more on the h...
Digital Transformation is much more than a buzzword. The radical shift to digital mechanisms for almost every process is evident across all industries and verticals. This is often especially true in financial services, where the legacy environment is many times unable to keep up with the rapidly shifting demands of the consumer. The constant pressure to provide complete, omnichannel delivery of customer-facing solutions to meet both regulatory and customer demands is putting enormous pressure on...
Charles Araujo is an industry analyst, internationally recognized authority on the Digital Enterprise and author of The Quantum Age of IT: Why Everything You Know About IT is About to Change. As Principal Analyst with Intellyx, he writes, speaks and advises organizations on how to navigate through this time of disruption. He is also the founder of The Institute for Digital Transformation and a sought after keynote speaker. He has been a regular contributor to both InformationWeek and CIO Insight...
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...