Welcome!

Server Monitoring Authors: Yeshim Deniz, Liz McMillan, Pat Romanski, Carmen Gonzalez, Ken Schwaber

Blog Feed Post

R and Bayesian Statistics

by Joseph Rickert Drew Linzer, the Bayesian statistician who attracted considerable attention last year with his spot-on, R-based forecast of the 2012 presidential election, recently gave a tutorial on Bayesian statistics to the Bay Area useR Group (BARUG). Drew covered quite a bit of ground running R code that showed how to make use of WinBugs, JAGS and Stan, the major engines for specifying and solving Bayesian models. With this very helpful introduction to Bayesian thinking fresh in my mind I thought that it would be worth a look at how well R and computational Bayesian statistics are getting along. After all, they practically grew up together. The modern era of Bayesian computation began with the “rediscovery” of MCMC algorithms in the early 1990s, and R became an open source project in 1995. The logical place to start, the CRAN Task View for Bayesian Inference, states that: Applied researchers interested in Bayesian statistics are increasingly attracted to R because of the ease of which one can code algorithms to sample from posterior distributions as well as the significant number of packages contributed to the Comprehensive R Archive Network (CRAN) that provide tools for Bayesian inference. My bet is that the reason that Bayesian task view lists 7 packages for general model fitting and over 80 packages for for specific Bayesian models and methods is because there are quite a few Bayesian statisticians are working in R with only a relatively small number are submitting packages to CRAN. However, even with all of this custom Bayesian coding it is probably safe to say that in the much of the computational heavy lifting for Bayesian analysis is accomplished through specialized Bayesian engines for which Drew provided examples.  WinBUGS is a version of the original BUGS (Bayesian Inference Using Gibbs Sampling) that began as a project  MRC Biostatistics Unit, Cambridge in 1989. WinBUGS is free, stable software that may be accessed via the R2WinBUGS R package. Although WinBUGS still sees quite a bit of use, all of the BUGS development these days is centered around the open source (GPL2) OpenBUGS software that runs on Unix and Linux in addition to Windows. The R2OpenBUGS package provides access to OpenBugs in a similar way that R2WinBUGS interfaces to WinBUGS. The BRugs package provides tighter integration to OpenBUGS. Its interactive interface allows for completing some housekeeping tasks such as checking convergence without having to exit the BUGS software. JAGS (Just Another Gibbs Sampler) is a Bayesian engine that was designed to work with R. It is open source (GPL 2) runs on multiple operating systems, is extensible and allows users to write their own functions. The language JAGS uses to specify Bayesian models is a variation of the basic BUGS language. R users access JAGS through the rjags package and may used the coda package to analyze the MCMC results. The newest Bayesian engine, Stan (named after Stanislaw Ulam of Monte Carlo fame), is a open source software (GPL 3) that was designe to be faster and handle hierarchical models that are out of reach for both OpenBugs and JAGS. Stan runs on various versions of Windows, Mac OS X and Linux.  According to the Stan manual: “A Stan program is first compiled to a C++ program by the Stan compiler stanc, then the C++ program compiled to a self-contained platform-specific executable.” Stan’s language for expressing the Bayesian models and its method computing posteriors (No-U-Turn sampler, a variant of Hamiltonian Monte Carlo) are also different from the BUGS. R users access Stan through the RStan package. If you are new to Bayesian Computing Drew’s sample code is a good place to start. Here are three lines of code to do a Bayesian regression that may open up an new way of thinking about regression inference for you. library(MCMCpack) breg <- mcmcregress(incumbent.vote ~ gdp.growth + net.approval two.terms, dat) summary(breg); plot(breg) created by pretty r at inside-r.org now instead of a point estimate and p-value for coefficient you have an entire distribution to consider. a very nice expositional touch in drew’s tutorial is the use rstudio’s manipulate package create slider allowing one see how changing shape parameters beta prior affect posterior distribution. i think this intuition building tools helpful. drew mentioned couple books help go further: "the bugs book: practical introduction bayesian analysis" (2012) david lunn et al. john kruschke's "doing data analysis: with bugs" (2010). these would add: jim albert's classic "bayesian computation r" (2009). two new r-based are "applied statistics openbugs" (2013) mary kathryn cowles essentials jean-michel marin christian robert (2014).  if there "killer app" drive someone analysis necessity my vote be hierarchical regression modeling. "data using multilevel>

Read the original blog entry...

More Stories By David Smith

David Smith is Vice President of Marketing and Community at Revolution Analytics. He has a long history with the R and statistics communities. After graduating with a degree in Statistics from the University of Adelaide, South Australia, he spent four years researching statistical methodology at Lancaster University in the United Kingdom, where he also developed a number of packages for the S-PLUS statistical modeling environment. He continued his association with S-PLUS at Insightful (now TIBCO Spotfire) overseeing the product management of S-PLUS and other statistical and data mining products.<

David smith is the co-author (with Bill Venables) of the popular tutorial manual, An Introduction to R, and one of the originating developers of the ESS: Emacs Speaks Statistics project. Today, he leads marketing for REvolution R, supports R communities worldwide, and is responsible for the Revolutions blog. Prior to joining Revolution Analytics, he served as vice president of product management at Zynchros, Inc. Follow him on twitter at @RevoDavid

IoT & Smart Cities Stories
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...
Bill Schmarzo, Tech Chair of "Big Data | Analytics" of upcoming CloudEXPO | DXWorldEXPO New York (November 12-13, 2018, New York City) today announced the outline and schedule of the track. "The track has been designed in experience/degree order," said Schmarzo. "So, that folks who attend the entire track can leave the conference with some of the skills necessary to get their work done when they get back to their offices. It actually ties back to some work that I'm doing at the University of San...
Bill Schmarzo, author of "Big Data: Understanding How Data Powers Big Business" and "Big Data MBA: Driving Business Strategies with Data Science," is responsible for setting the strategy and defining the Big Data service offerings and capabilities for EMC Global Services Big Data Practice. As the CTO for the Big Data Practice, he is responsible for working with organizations to help them identify where and how to start their big data journeys. He's written several white papers, is an avid blogge...
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence. Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more busine...
If a machine can invent, does this mean the end of the patent system as we know it? The patent system, both in the US and Europe, allows companies to protect their inventions and helps foster innovation. However, Artificial Intelligence (AI) could be set to disrupt the patent system as we know it. This talk will examine how AI may change the patent landscape in the years to come. Furthermore, ways in which companies can best protect their AI related inventions will be examined from both a US and...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
Chris Matthieu is the President & CEO of Computes, inc. He brings 30 years of experience in development and launches of disruptive technologies to create new market opportunities as well as enhance enterprise product portfolios with emerging technologies. His most recent venture was Octoblu, a cross-protocol Internet of Things (IoT) mesh network platform, acquired by Citrix. Prior to co-founding Octoblu, Chris was founder of Nodester, an open-source Node.JS PaaS which was acquired by AppFog and ...
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also receive...